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FOREWORD 

This report presents an alternate method to the solution of the kappa guidance optimal 
control problem. Kappa guidance is a method of computing midcourse guidance for missiles, 
e.g., surface to air missiles. The kappa guidance optimal control problem comprises the state 
dynamical equations and the cost function. The cost function is set to maximize the proba- 
bility of kill. The objective of optimal control is to solve the state dynamical equations while 
minimizing the cost function. The original published method, in Reference [2] to this report, 
gives a suboptimal feedback controller. This controller generates a solution to the guidance 
equations so trajectories may be computed. It is suboptimal since approximations are made in 
its derivation. The alternate method presented is referred to as linearized kappa guidance since 
a linearizing coordinate transformation and nonlinear feedback are used on the nonlinear state 
dynamical equations. The linearized method is also suboptimal, as approximations are made in 
its solution; however, the approximations are different from those used in the original method. 
The main feature of the linearized method is that closed form solutions for the states are derived. 
Such closed form solutions for the states were not obtained in the original derivation. The costs 
of trajectories computed by each method for identical initial conditions are comparable. 

This report has been reviewed by A. Garza, Head, Systems Engineering Branch, and R.E. 
Lutman, Head, Combat Systems Engineering Division. 

Approved by: 

C^ L.M. WILLIAMS, III, Head 
COMBAT SYSTEMS DEPARTMENT 
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CHAPTER 1 

INTRODUCTION 

In this report, an alternate solution method to the K guidance optimal control problem is 
presented. Kappa guidance is a technique for computing the midcourse guidance of a missile; e.g., 
a surface to air missile. Kappa guidance optimizes the midcourse trajectory of a missile so that the 
terminal velocity is maximized. This increases the probability of kill. The current solution method 
for the K guidance optimal control problem (which we will also refer to as the original method) is to 
write the Hamiltonian and obtain a solution from the necessary conditions. Closed form feedback 
controllers are obtained for both the free final angle of approach case and the fixed final angle 
of approach case with the original method. The original solution method is suboptimal because 
approximations are made in its derivation. In this alternate method the nonlinear dynamics, 
which also vary with respect to the independent parameter range, are linearized via a nonlinear 
coordinate transformation and nonlinear feedback. The cost function, which is nonlinear, is still 
nonlinear in the transformed coordinates. A quadratic approximation to the cost function is made 
in the transformed coordinates. Then the (transformed) guidance problem is solved using Linear 
Quadratic Regulator (LQR) control on the linearized dynamics and approximate quadratic cost. 
Closed form state equations and adjoint variable equations are obtained. That is, the velocity 
vector angle and heading error angle for the midcourse trajectory are known in closed form with 
this alternate method. Because of the cost approximation, the alternate solution method is also 
suboptimal. The main feature of the alternate method presented here is that closed form solutions 
for the states are derived. Such closed form solutions were not obtained with the original method. 
The costs of trajectories computed by each method for identical initial conditions are comparable. 

In Chapter 2, the K guidance optimal control problem will be reviewed. A detailed discussion 
of K guidance and the original method is given in Lin.^ In Chapter 3 the dynamics of the 
problem are linearized using a nonlinear coordinate transformation and nonlinear feedback. The 
LQR optimal control problem is set up in Chapter 4. The necessary conditions are given and 
solutions considered for free and fixed final angles of approach in Chapter 5. Examples comparing 
the original and alternate solutions are given in Chapter 6. Much of this paper was presented in 

Serakos-Lin.® 

1-1 
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CHAPTER 2 

DYNAMICAL EQUATIONS 

In this chapter, the dynamical (state) equations and optimal control problem will be reviewed. 
The K guidance dynamical equations are 

d_ 
dP 

7 
8 

K sec (8) 
Ksec{8) + t<m(8)/(Ro-P) 

(2.1) 

where the state variables 7 and 8 are the velocity vector angle and the heading error angle 
respectively. The range to the projected intercept point (PIP) is represented by R, and K is the 
curvature. The initial range to the target is RQ, and we define P = Ro - R. The independent 
parameter in this problem is taken to be P. It is interesting to note that the derivative of P is 

dependent on the state variables since P is positive or negative depending on whether — TT/2 < 6 < 
ir/2 or 7T/2 < 8 < -ir/2. (In many engineering problems, the independent variable is time, which 
generally does not depend on the state variables.) Under every normal circumstance, however, 
—7r/2 < 8 < TT/2. The curvature K is also the control. The cost is 

,7(7,8, P, K) = J* [(K
2
/2) + ^2] sec (8) dP , (2.2) 

where u is a constant which depends on aerodynamic parameters; see Equation (8-150) of LinJ J 
This original formulation was developed by F. Reifler.® Figure 2-1 shows the relationships between 
the states. The state equations, Equation (2.1), may be derived from the geometry and the 
definition of K. The argument of Equation (2.2) contains /c2, which penalizes excessive curvature, 
and sec (8), which penalizes large heading error angle. These work to maximize intercept velocity, 
which increases the probability of kill. Hence, minimizing the cost J(i, 8, P, K) in Equation (2.2), 
maximizes the intercept velocity. The discrepancy of these state and cost equations with those 
given in Lin/1! Gray-Hecht,^ Ohlmeyer® and Serakos-Linl2' is discussed in Appendix A (e.g., 
the minus signs on the right-hand side of Equation (2.1)). 

We rewrite the dynamical equations to be in a form that is more familiar to control engineers. 
Let xi = 7 and x2 = 8. Then, Equation (2.1) becomes 

J_ 
dP 

Xi 

X2 

0 
tan(z2)/P 

+ sec(a;2) (2.3) 

The variables xi and x2 are referred to as the state variables. Equation (2.3) represents the plant. 
Let 

0 
f(x1,x2,R) - 

tan(a;2)/P 
g(xi,x2,R) — sec(x2) (2.4) 

2-1 
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FIGURE 2-1. MID-COURSE GUIDANCE 
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Then, Equation (2.3) becomes 

d x 
dP 

f(xl,x2,R)+g{x1,x2,R)-K. (2-5) 

Equations (2.5) and (2.2) represent the K midcourse guidance optimal control problem. The 
original method proceeded to solve this problem by obtaining the Hamiltonian and solving for the 
necessary conditions. A detailed discussion of the original method is presented in Lin,t 1 Section 
8.6.3. The state equations are given in Lint1' by Equations (8-140a,b), and the cost is given by 
Equation (8-150). (As previously stated, the discrepancy is discussed in Appendix A.) The closed 
form solution for the feedback control in Lin^ is given by Equation (8-167) in the free final angle of 
approach case, and by Equation (8-165) when the final angle of approach is specified. The original 
solution method is suboptimal since approximations are made in obtaining these controllers; see 

section 8.6.3 of Lin.!1' 

2-3 
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CHAPTER 3 

LINEARIZING COORDINATE TRANSFORMATION AND FEEDBACK 

In this chapter, we will find a nonlinear coordinate transformation and feedback that will 
linearize Equation (2.5), the state equation. Consider the coordinate transformation 

Z2 

= F(xUX2,R) = 
Xi — x2 

— t&n(x2)/R 
(3-1) 

Note that the transformation exists for all R =fc 0.  Although the independent variable is P, in 
many cases it will be more convenient to work with R(= RQ-P). The inverse transformation is 

xx 

X2 

F-\Zl,z2,R) = 
Z\ — tan   1(Rz2) 

-t<m-l(Rz2) 

Define a nonlinear feedback by 

where 

and 

K = a(xi, x2, R) + ß(xt, x2,R)-u , 

sin(a;2)(cos 2(x2) + 1) 
a(xux2,R) = 

R 

(3.2) 

(3.3) 

(3.4) 

ß(xux2,R) = -Rcos3(x2), (3.5) 

and where u is the input to the linearized closed loop system. (The coordinate transformation and 
nonlinear feedback represented by Equations (3.1) and (3.3) where derived using the techniques 
from the differential geometric approach to nonlinear control, see Isidori®). Using the coordinate 
transformation and the nonlinear feedback, we compute the representation of the closed loop 
system in the ~z coordinates. The chain rule gives 

STt__dF_d^_     dFdR 

dP ~ die  dP + dRdP ' 

Denote 

F. 
A dF 

81? 

1 -1 
0   -sec2(x2)/R 

The closed loop system (Equation (2.5) with the nonlinear feedback Equation(3.3)) is 

^ = F.(f + ga)(l?) + F.{gß){?) ■ u + ^(^) 

(3.6) 

(3.7) 

3-1 
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Computing, we have that 

F.(f + 9<x)C?) = 

-1 

1 -1 
0   -sec2(x2)/R 

0 
tan(x2)/R 

+ •sec \x2)IR sec^) 
sm(x2)(cos2(x2) + 1)' 

— tan(x2)/R 
— sec2^) tan(x2)/R

2 + 0 

Hence, 

Also, 

And 

sec3(x2)sin(x2)(cos2(a;2) + 1)1' R2 

F.(f + ga)(-?) = 

— ta,n(x2)/R 
Un(x2)/R

2 

z2 

-z2/R 

F.(gß)p?) 
-1 

sec2(x2)/R 
1 
0 

W ^      dF_> dR_ 

dP{x)~ dR{x)dP~ 

■ sec(s2) (-Äcos3(ar2)) 
0 
1 

0 
t&n(x2)/R

2 

(Note that dR/dP = -1.) So, 
dF 

dP (^) 
0 

Hence, the closed loop system in ~z  coordinates is 

_d_ 

dP z% 
— 

'or 
0   0 

Z\ 

z<i 
+ ' 0 ' 

1 
(3.8) 

A block diagram representing the situation given by Equations (2.3), (2.2), (3.1) and (3.3) is given 
in Figure 3-1. It is interesting to note that the right-hand side of Equation (3.7) depends on P 
while the right side of Equation (3.8) does not. Apparently, the coordinate transformation F and 
nonlinear feedback a and ß vary with respect to P, in such a way that the dependence on P in 
Equation (3.8) cancels out. 

3-2 
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CHAPTER 4 

LQR OPTIMAL CONTROL PROBLEM FORMULATION 

In this chapter we will set up the LQR optimal control problem. The cost function, Equation 
(2.2), is not in the desired quadratic form after the nonlinear feedback and coordinate transfor- 
mation. Hence, a quadratic approximation to the cost will be made. Along with the linearized 
dynamics, Equation (3.8), this will complete the setup of the LQR optimal control problem. 

The Taylor series expansions for a and ß are 

a = -RX2+ZRX^ 
and ■R + -Rxl + 

Hence, for small x2 and u 

~2 

a2        n       ß2u2 

Li   *   Xr 
'2„,2 

+ 2•X2U + 
R2u 

For small x2, the secant may be approximated by 

sec(x2) = 
1 (1 + \xl) 

1  +  ^9 

(4.1) 

(4.2) 
cos(ar2)       (1-H)    (\ + \x\) 

Since this is a quadratic approximation, x<i and u do not have to be as small as they would have 
to be if a linear approximation were being made. This point will be further considered in the 
examples. From Equations (4.1) and (4.2) we have 

,K 
(y+w2)sec(a;2) (" 

x2 

OJ 

R? 
2 

+ 2 • X2U + 

("57 + ir)x2 + 2 • x2u + 
R2 

2   i       2 
U    + OT (4.3) 

T      2/z 2 
The "+u;2" term in the right hand side of Equation (4.3) may be deleted without changing the 
optimal control problem; hence, the cost may be approximated by 

J * C vh + T)x2 + 2-X2U + Yuf dp (4.4) 

(Later, when a numerical value for the cost of a particular trajectory is computed, the "+u>2" 
term will be put back in.) The coordinate transformation and its inverse, Equations (3.1) and 
(3.2), may similarly be approximated, 

z2R 
z2 

X\ — x2 

-x2/R 
x\ z\ 

-z2R 
(4.5) 

4-1 
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In ~z coordinates, the cost may be approximated by substituting Equation (4.5) into Equation 
(4.4) to get 

J * C {(2 + HT)j8*"2"Rz2U + v4 dp ■ (4'6) 

The LQR optimal control problem is given by Equations (3.8) and (4.6). The solution to this 
LQR optimal control problem would be an approximate solution to the original optimal control 
problem given by Equations (2.1) and (2.2). 

4-2 
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CHAPTER 5 

NECESSARY AND SUFFICIENT CONDITIONS 

In this chapter the necessary conditions and their solution, for both the free and fixed final 
approach angle cases, will be considered. For convenience we repeat the state, or plant, equations 
given by Equation (3.8), 

**     A^ + B-u, (5.1) 
dP 

where 

A = 
' 0 1" 

and B = 
0 

u u 1 

and cost function given by Equation (4.6), 

R2u2 

J -J£> 
R 

)z2-2-Rz2u + 2 -u
2\ dP , 

(5.2) 

(5.3) 

for the LQR optimal control problem being considered. The solution to this form of the linearized 
quadratic problem is well known. See Athans-Falb.^ However, we will go through the solution as 
a review. This will show the formulation of the optimal control problem, the necessary conditions 
and the Riccati equation. 

FORMULATION OF HAMILTONIAN AND OPTIMAL CONTROL 

The Hamiltonian-is (see Athans-FalbM) 

H{t,f,u,R) = C{tyu,R) + (y,f(t,u)) , (5.4) 

where 
R2u2 

■2„,2 

and 

£(■?, ti, R) = (2 + -ij-M ~ 2 • Rz*u + 2Ru 

/(^.«) 
" 0   1 " 

0   0 
Z\ 

. Z2 . 
+ ' 0 " 

1 
u = Z2 

U 

(5.5) 

(5.6) 

The vector ~p = (pi,P2)' contains the adjoint variables. Substituting Equations (5.5) and (5.6) 
into Equation (5.4) gives for the Hamiltonian, 

n = (2 + ^Y~)4 - 2 • Rztu + -R2u2 +piz2 + p2u (5.7) 

5-1 
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Now, from the minimum principle, we obtain two pairs of differential equations which the state 
and adjoint variables must satisfy. The first pair are the state equations, which we obtain from 

dP 
dH 

(5.8) 

The second pair are the adjoint equations 

dy      dH 
dP 8' 

0 
Pl + (4 + R2

LO
2
)Z2 -2-Ru 

(5.9) 

The optimal control must minimize the Hamiltonian; hence, dH(u)/du = 0. (This is a necessary 
condition.) We differentiate Equation (5.7) to find the extremum of H with respect to u, 

m 
du 

-2 • Rz2 +p2 + R2u = 0 (5.10) 

Solving for u, 

u  = 
2z2        P2 

(5.11) 
R      R2 ' K      J 

where the asterisk superscript indicates an optimal quantity. To see that this control minimizes 
the Hamiltonian, check the second derivative of H: 

d2H 
du2 R2>0; 

hence, Equation (5.11) does minimize the Hamiltonian.   Substituting Equation (5.11) into the 
state and adjoint equations, Equations (5.8) and (5.9), gives 

d 
dP 

z-i 

P\ 
. P2  . 

= 

Z2 

2z2/R - P2/R2 

0 
4z2 - 2p2/R - pi - (4 + R? u2)z2 . 

= 

' 0 
0 
0 
0   - 

10         0' 
2/R      0     -l/R2 

0         0         0 
-RW   -1    -2/R . 

" Zl  ' 

Z2 

Pl 

. Pi  . 

• (5.12) 

Equation (5.12) is referred to as the Hamiltonian system associated with the optimal control 
problem. It is of the form 

where 

W 

d_ 
dP 

0     1 
0   2/R 

z 

~P 

W     -S 
-Q   -W 

z 

~p J 

, Q = 
0    0 
0   R2u>2 , and S = 

0      0 
0   l/R2 

(5.13) 

(5.14) 

5-2 
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The solution to the linear homogeneous Equation (5.13) is 

z 
—) 
V  J 

(Pi) 
Cl\l     "12 

"21     "22 
(PUPT) 

L P 
(A), (5.15) 

where the üij are (unknown) 2x2 matrices. 
Two boundary conditions for Equation (5.15) come from the known initial conditions of the 

state variables. The other two boundary conditions for Equation (5.15) come from the transversal- 
ity conditions. These pertain to the various requirements imposed on the final angle of approach. 
We consider two cases in the following sections. First, we consider the case where the final angle 
of approach is free. In this case the final angle of approach which minimizes the cost is automati- 
cally selected. Secondly, we consider a fixed final angle of approach. In this case the final angle of 
approach is selected by the user based on operational considerations. The trajectory is optimized 
subject to this constraint. 

FREE FINAL ANGLE OF APPROACH - NECESSARY CONDITIONS 

First, we assess the boundary conditions for the Hamiltonian system, Equation (5.12). The 
initial conditions on the state variables are known, which give the two conditions 

-?(P = 0) = (zio,2ao) (5.16) 

A free final angle of approach means that the terminal constraints on the state variables are free. 
According to the transversality conditions for a free end point, 

y(P = Ro) = 0. 

(See Table 5-1 of Athans-Falbt7!). Integrating the third row of Equation (5.12) yields 

Pi = 0. 

Substituting this into the second and fourth rows of Equation (5.12) gives 

dz2 

~dP 

and 
dp2 
dP 

2£2  _ 

R " 

= -RWz2 

P2_ 

R? 

R 
;P2 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

Differentiating Equation (5.20) gives 

d*P2 D2, ,2^2 

-dFZ = -RudP 
1RJJZ2— - 

dR     2dp2      2     dR 

dP RdP + R?P2'dP 

-R •V ,dz2 _ clz2\ 
V JD T>   > dP R 

5-3 
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Applying Equation (5.19) and rearranging Equation (5.21) yields the following equation: 

The general solution to Equation (5.22) is 

p2(R) = dRsmh(ujR) + C2Rcosh(uR) . (5.23) 

We can then solve for z2 using Equation (5.20); 

„,  , [smh(wÄ) - uRcosh(u>.ß)] - -—-[cosUuR) - uRsinh(ü>Ä)] . (5.24) 

To get the final solutions for p2 and z2 from Equations (5.23) and (5.24), we must evaluate C\ 
and C2 using the boundary constraints. The boundary condition given by Equation (5.17) does 
not help out. However, if the missile is to hit the target, the heading error angle at R — 0 must be 
zero (£(0) = 0). From physical considerations, S(R) = x2(R) is continuous, so the heading error 
angle should approach zero as R approaches zero; i.e., 

lim x2(R) = 0 . (5.25) 
Ft—►() 

(Only continuous solutions for the state and adjoint variables are allowed.) When C\ = 0 we have 
from Equation (5.24) 

Co 
z2(R) = -—^-{cosh(ujR)-ujRsmh(uR)} 

°2   f(l + wR2 + £# + 0(R°)) - (u,2E2 + ^-R4 + 0(B*))) 
R?^ y       2 24 v    "     v 6 

C2       f.       OJ2 „„      u>4 

R2-^R4 + 0{R6)\ . (5.26) 
RW   \       2 8 

Now, Equation (3.2) gives 

x2(R) = -t!m-1(Rz2) = -(Rz2 - ^(Rz2)
3 + 0((Rz2)

5)) 

C2  (-8 + 4M)2 + M)4)  |       Cj      (-8 + 4{uR)2 + (L>R)4f 
8-R a;2 1536 ■ R3 

= JAR-3 + (% + I9!) R-' + (-T-lgi)R + H-°-T- 3 a;6 \u>2      2w4/ \    2       8w2/ 

(H.O.T. stands for higher order terms.) This shows x2(R) goes to infinity as R —> 0 unless C2 — 0. 
Hence, to satisfy Equation (5.25), it is necessary that C2 = 0. When C2 = 0 we have from Equation 
(5.24) 

n 
z2(R) = ——i-[sinh(a;i?) - u}Rcosh(cvR)} 

R uj 

5-4 
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Cx    „     n   .   "* o,3 
[(wÄ + ^ + 0(R5)) - {uR + —R3 + 0(R5))} 

uR + R.O.T. 

/PW3IV 6 v    //     v 2 

3 

xa(Ä) = - tan-^ifea) = -^ • w • i?2 + H.O.T. 
ö 

In this case Equation (5.25) is satisfied for all 0 < d < oo. Note that the terms in the series 
expansion of x2 associated with C\ are even functions of R and the terms associated with C2 are 
odd functions of R. This fact implies that we may do an analysis by taking C\ — 0 and C2 ^ 0 
and then Ci ^ 0 and C2 = 0. (This was taken into account in the analysis presented in this 
paragraph.) 

With C2 = 0, we get 

z2(R) = ~£-[smh{uR) - uRcosh(u;R)} (5.27) 

and 
P2(R) = CiRsinh(uR) . (5.28) 

From the first row of Equation (5.12) and Equation (5.27) 

z1(R) = -C1
S^£± + K1. (5.29) 

The integration constants C\ and K2 may be computed from the initial values of 7 and 8. From 
Equations (3.1), (5.16) and (5.27) we have 

-tan(tW) = -^-{smh(uR<i)-uRocosHu>R0)] . 
Ro RQU

2 

Solving this equation in C\ gives 

C - RQU
2
 t<in(6(Ro)) ^^ 

smh(u}Ro) - üJRO cosh(wi?o) 

From Equations (3.1), (5.16) and (5.29) we have 

sinh(o;Äo) 
70 - oo = -Ci —5—-— + K2 . 

Hence, 

^2 = sr4— + 7o - <5o • (5.31) 

Next, closed form solutions for the (untransformed) state variables are given. From Equations 
(3.2), (5.27) and (5.29) we get 

7(A) = -CiS™l{"R) +K2 + tan-^-^sinhM) - uRcosh(uR)}) , (5.32) 
Rw2 Oxo* 
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S(R) = tan-1(-^-[sinh(a;JR) -uRcosh(uR)]) . 
Rui 

(5.33) 

Such a closed form solution for the state variables given by Equations (5.32), (5.33), (5.30) 
and (5.31) was not obtained in the original solution method of this problem. It is reiterated 
that the closed form solution obtained here is an approximated solution to the optimal control 
problem given by Equations (2.1) and (2.2) because of the quadratic approximation made in the 
cost function in Equation (4.4). (No other approximation is made.) 

FREE FINAL ANGLE OF APPROACH - SUFFICIENT CONDITIONS 

In this section sufficient conditions for the optimal control problem are considered. The 
sufficient conditions involve solving the Hamilton-Jacobi partial differential equation. A closed 
form solution to the Hamilton-Jacobi equation is found for the free final angle of approach case. 
This solution also gives a closed form solution to the cost. We will see that the necessary conditions 
presented previously are sufficient for optimality. 

There is a relationship between the state and adjoint variables. We demonstrate this next, 
which will also develop the Riccati equation. Setting Pi — RQ and P2 = P in Equation (5.15) and 
using Equations (5.17) and (5.18) we get 

o = n21(Ro,p)^(P) + n22(R0,p)-p>(P) 

so that 
-p(P) = -Ü22{R0,P)-1Ü21{R<hP)-^{P) ä K(P)?(P) . 

Substituting Equation (5.34) into Equation (5.13), we get 

(5.34) 

dp 
z 

—» 
L  P  J 

(W - SK)t 
(-Q - W'K)t . 

From this and differentiating Equation (5.34), 

dKy (-Q - W'K)-? = (KW - KSK + ^)~2 . 
dP 

Equation (5.35) holds for all ~z\ hence, 

dK 
dP 

+ KW + W'K - KSK + Q = 0 . 

(5.35) 

(5.36) 

Equation (5.36) is the Riccati differential equation for the LQR optimal control problem. It may 
k      k 

is symmetric; that is ki2 = k2i, and is positive definite, see be shown that K = 
«21 t"22 

Athans-FalbJ7] From Equations (5.18), (5.27), (5.28) and (5.29), we see that 

0 
P2(P) 

ku(P)  k12(P) 
ku(P)   k22(P) Z2(P) 

k11(P)z1(P) + k12(P)z2(P) 
k12(P)Zl(P) + k22(P)z2(P) 

(5.37) 

5-6 



NSWCDD/TR-94/367 

where the A$ are the unknowns. Equation (5.37) is overdetermined; hence, we select knto be a 
free parameter. Solving the first row of Equation (5.37) for k12 gives 

hi — 
22 

(5.38) 

Substituting Equation (5.38) into the second row of Equation (5.37) gives 

&22 = —(P2 +  )  • 
Z2 Z2 

(5.39) 

Hence, 

K(P) 
hi(P) 

k11(P)z1(P) 

k11(P)z1(P) 

(5.40) 

z2(P) z2(P)    V"V~ ' '        *2(P)      J 

Equation (5.36) has a terminal (not initial) condition, which is K(Ro) = 0 (see Table 5-1 of 
Athans-Falb^). A solution to Equation (5.36) which satisfies this terminal condition is unique 
(see Athans-Falb M page 762). It may be seen that 

K(R) 
0 

0   - 

0 
R

3
LO

2
 smh(uR) 

ksinh(o;jR) — UJR cosh(w-R) / 

(5.41) 

fits. The solution presented by Equation (5.41) was obtained by setting kn = 0 in Equation 
(5.40). 

Sufficient conditions for the optimality are considered next. This involves showing that the 
feedback control given by Equation (5.11) satisfies these conditions, and it will be seen that it is 
globally optimal. We refer to Theorem 5-13 of Athans-FalbJ'l First, we see from Equation (5.7) 
that the Hamiltonian is normal relative to X = 3R2 x (0, Ro). From the work done previously in 
this section, it is seen that this controller is the 7^-minimal control relative to X. 

We will find it convenient to rewrite the Hamiltonian. Consider the Hamiltonian as given by 
Equation (5.7). It may be rewritten as 

where 

H=2 

£u = 

"-] 

0 0 
0   i + RW 

ill     Z-12 
—>• z + 

L'l2     1/22 u 

,2 > L\2 - 
0 

-2. R 

+ (j?,At + Bu) 

and Z22 = R2 

(5.42) 

(5.43) 

Comparing Equation (5.14) with Equations (5.2) and (5.43), we find that 

BB' 
W = A_E3lj S 

L 22 £22 
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Substituting these into the Riccati equation, Equation (5.36), gives 

M+KA_K^ + A,K_^K_K^K + Lii_Li?Lk = o. (5.44) 
dP 1/22 ^22 2/22 ^22 

The last part of the sufficient conditions in Theorem 5-13 of Atnans-FalbM is the Hamilton- 
Jacobi partial differential equation. The Hamilton-Jacobi partial differential equation is 

%+ minW(l?,^,u,/>) = 0. (5.45) 
or       u d z 

Let J = \ (t, IC?). Then % = \(~?, ~^\ and ^- = K t. From Equations (5.11) and x ' Or \       dr     I Q~Y 
' Ti        B'K~\ 

(5.43), we have that u* — —   -~^- -f ——  ~z . Substituting into the Hamilton-Jacobi equation, 
[£22 ^22 J 

~(lt,KB{L'X2 + B'K)t) 

= \ ("' %^) + \ ^'Ln^ + \ (^' A'Kr) + \ (~*>KAlt) 

-0-7- {^^BL'l2~t) - -J— (^,KBB'Kt) 
l ■ L21   x '        Z • i^22 

- ^- ("^ Lii&K?) - -±- {?, LnL'W?) • (5-46) 
Z • 1/22 'I- L22 

Since Equation (5.46) holds for all values of "i*, we get that 

~ + Lu + A'K + KA--^-- KBL'l2 - 4~ • KBB'K 
dr Li J22 ^22 

L12B K —-— • L\2L^2 — 0 
L22 L22 

and the Hamilton-Jacobi partial differential equation is satisfied since K satisfies the Riccati 
equation. As a consequence of this, we get a closed form solution for the optimal cost , 

J(7, 6, P,*) = \ (Fp?, P), K(P)F(?, P)) + J* u2dP , (5.47) 

where F is the transformation given by Equation (3.1). Equation (5.47) will be verified in Chapter 
6, the Numerical Examples chapter. The last term in Equation (5.47) is to account for the "-fw2" 
term that was deleted in obtaining the quadratic cost approximation in Chapter 4. 
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TERMINAL CONSTRAINT ON INTERCEPT ANGLE - NECESSARY CONDI- 
TIONS 

In this section, the LQR optimal control problem will be formulated with a terminal constraint 
on the intercept angle. The state variable xx represents the velocity vector angle, which is the 
intercept angle. The terminal constraint then is xi(P = RQ) = 7/. In the transformed coordinates, 
see Equation (3.1), using the continuity of the state variables, the terminal constraint is 

lim L - tun-1 (Rz2)] = 7/ . (5.48) 

The two initial boundary conditions for Equation (5.12) are 

"T(P = 0) = (W2o) • (5-49) 

An integration of Equation (5.12c) gives 

Px = constant — K\ , (5.50) 

where K\ is to be determined. (Integration constants in this section are not to be confused with 
integration constants of the previous section.) The remaining state and adjoint equations are 

and 
^ = -Kl - ÄVz, - 2f • (5.53) 

The same differential equation as Equation (5.21) can be derived for p2 with the same general 
solution: 

p2{R) = CxRsnMwR) + C2Rcosh(uR) . (5.54) 

Applying Equations (5.53) and (5.54), 

Cl -[smh{ojR) - uRcosh(wÄ)] - ^-[cosh(u;J?) - uRsinh(wÄ)] + —\ .        (5.55) "     £2W2l        V       '      ~—~v~VJ      R2^2l v       , v       n      R2(J1 

The same situation as before applies and is used to evaluate the coefficients. Considering the 
Taylor series expansion of x2, using Equations (5.55) and (3.1), the term Kx/R2u2 will contribute 
terms with even powers of R. Referring to Equation (5.26), the Taylor series expansion of z2 when 
Ci = 0 is 

5-9 



NSWCDD/TR-94/367 

From this, it can be seen that a requirement for satisfying Equation (5.25) is that Kx - d- 

Therefore, 

z2(R) = 
d n 

[sinh(wjR) - uRcosh(wÄ)] - -^[cosh(ujR) - uRsinh(w£) - 1] .       (5.56) £2^2 1—v—v      — V—/J      R2(jj2 

From the first row of Equation (5.12) and Equation (5.56) we get 

1 
Zl(R) 

Ru>2 
[d sinh(wE) + d cosh(uR) - d] + K2 , (5.57) 

where K2 is an integration constant. Applying the terminal constraint, Equation (5.48), we get 

K2 = Q + 7/ • (5-58) 

Hence, 
i C 

zAR) = --±-[d süh(uR) + C2 cosh(u>i?) - C2] + — + 7/ • (5-59) 
Ru>2 u 

The constants d and C2 can be determined from the initial state ~X{RQ). From Equations 

(5.55) and (5.59) we obtain 

zi(Ro) = 7o-^o 

and 

1 C 
—— [d sinh(a;i?o) + d cosh(u>itlo) - d] + — + 7/ 
ROOJ

2 <■<•> 

z2(Ro) = -t<m(8o)/Ro 

d 
r[sinh(wi?o) — UJRO cosh(a;i?o)] 

R2u;2^""K~^J     """" v   ~""/J      Rlu> 

Hence, d and C2 are the solution of the linear algebraic equation: 

Rou - sinh(wÄo) 1 - cosh(^Äo) 

- sinh(wi?o)     \     / - cosh(w.fto) + 1 
+u)RoCOsh(uRo) J    I +uRo sinh(aJÄo) 

-y^-[cosh(u;.Ro) - u)Rosmh.{u>Ro) - 1] 

d 
d = iW 7o - <$o - 7/ 

— tan(^o) 
(5.60) 

At this point, the closed form solutions to the (untransformed) state variables for the con- 

strained final angle of approach case may be obtained. We have 

7(£) = —^[d sinh(wÄ) + d cosh(a;Ä) - d] + K2 
Rw2' 

+ tan-1(-^[sinh(o;JR) - uRcosh&R)] + -^[cosh(uR) - ojRsinh^R) - 1]) , 
K
RUJ

2
' 

(5.61) 

and 
si 

S(R) = tan-^-^fsinhfwÄ) - utRcosh(wE)] + —^[cosh(wÄ) - «Äsinh(wÄ) - 1]) •     (5.62) 
n 

We have arrived at closed form solutions for the state variables for the constrained intercept 
angle case. These are given by Equations (5.61) and (5.62). Such closed form solutions were not 

obtained in the original formulation. See Lin.W 
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RELATIONSHIP BETWEEN STATE AND ADJOINT VARIABLES - TERMINAL 
CONSTRAINT ON INTERCEPT ANGLE CASE 

We first formulate the Riccati equation for this case, which also gives a relationship between 
the state and adjoint variables. Setting Pi = 0 and P2 = P in the first row of Equation (5.15) we 
get 

Y(P) = -O1-1
1(0,P)ni2(0,P)y(P) + 0^(0,^)^(0). (5.63) 

Set M(P) = On (0,P) • O12(0,P). Differentiating Equation (5.63) gives 

£-£?+"£+^-™- <5'64) 

Substituting Equation (5.63) into the second row of Equation (5.13) yields 

£lr = -Q[My + nu1(0,P)l?(0)} + W'y . (5.65) 

Substituting Equation (5.65) into Equation (5.64) gives 

STt dM_> __— ,„„,_► w^-l/n    m-»/nN   .    dn 
ii 

= ^Lf _ MQMJ? - MW'y - MQU^(0,P)r(0) + -r^(O) . (5.66) 
dP       dP a* 

Substituting Equation (5.63) into the first row of Equation (5.13) gives 

^J = WM~p> + WSl£(0,P)-?{0) - S^ . (5.67) 
dP 

Equating Equations (5.66) and (5.67), since these equations hold for any ~j? andY(O), gives the 
following two equations : 

— - MQM - MW - WM +S = 0 (5.68) 

and 
^S, - WlTftO, P) - MQn£(0, P) = 0 . (5.69) 

The boundary constraint for Equation (5.68) is 

M(0) = -0^(0,0)O12(0,0) = / • 0 = 0 . (5.70) 

The initial condition for Equation (5.69) is On (0,0) = L Equations (5.63), (5.68), (5.69) and 
(5.70) give the relationship between the state variables ~~z and the adjoint variables ~p in this 
case. 
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CHAPTER 6 

NUMERICAL EXAMPLES 

In this chapter, several numerical examples of the linearized K guidance are given. These 
numerical examples are an attempt to evaluate the performance of the linearized kappa guidance 
method. A comparison to the original method, which is presented in Lint1', is given. First, 
individual trajectories generated by each method are compared. These results are shown in 
Figures 6-1 through 6-4. Each figure shows a trajectory generated by the original K method and a 
trajectory generated by the linearized K method. In each case, the origin of the trajectory (launch 
point of the missile) is at (0,0) and the PIP is at (1,0), giving Ro = 1. The constant u is set to 
one. For all of the these examples, the program was set to stop when R < 0.01. The abscissa 
on these figures is downrange and the ordinate is altitude above a reference launch altitude hTef 

(plots depict range vs. href.) No particular units are represented; however, these figures may 
be considered to be in miles. In Figure 6-1, 7o = 60 = TT/3 and 7/ = FREE. In Figures 6-2, 
6-3 and 6-4, 7o = S0 = TT/3. In Figure 6-2, 7/ = -TT/2. In Figure 6-3, 7/ = 0. In Figure 6-4, 
7/ = TT/2. The trajectory in Figure 6-4 is presented for the purpose of demonstrating a terminal 
approach opposite that of Figure 6-2 and to provide a more complete comparison of the linearized 

K guidance method with the original K guidance method. 

Figures 6-5 through 6-7 are cost curves. Recall that smaller cost means a higher intercept 
velocity. Each of these figures shows the costs for a particular family of trajectories. For each 
trajectory whose cost is shown in Figures 6-5 through 6-7, the origin of the trajectory is at (0,0) 
and the PIP is at (1,0). Equation (2.2) is used to compute the cost of every trajectory in this 
report. In Figure 6-5, the costs of trajectories with free final angle of approach with various initial 
heading error angles are computed. Each point of the abscissa represents one of these trajectories 
with a specific initial heading error angle. The corrseponding ordinate value is the cost associated 
with that angle. Trajectories with initial heading error angles within S0 € [-1.5,1.5] are computed. 
For the linearized method, it was not possible to compute trajectories for \S0\ > 1.2. It may be seen 
that the costs of trajectories computed with the linearized method are close to those computed 
with the original method for |<50| < 0.8. The third curve shown in Figure 6-5 gives costs for various 
So using Equation (5.47). It is seen that Equation (5.47) is a close approximation to the true cost 

of a trajectory, computed by either method, for 80 € [—0.5,0.5]. 

In Figures 6-6 and 6-7, the initial heading error angle is fixed and the final angle of approach 
(or final velocity vector angle) is varied. In Figure 6-6 we have 80 = 0, and in Figure 6-7 we have 
80 = TT/3. That is, for Figure 6-6, costs for trajectories, computed with both methods with <S0 = 0, 
are plotted for 7/ € [-1.5,1.5]. The costs in this figure computed by each method, for a 7/ are 
nearly identical. The costs for trajectories computed by the two methods in Figure 6-7 are still 
comparable, although they are not as close as in Figure 6-6. The linearized method has a slightly 

lower cost for 7/ € [-1.5, -1.1], while the original method has the lower cost for 7/ € [-1.1,1,5]. 
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Figures 6-8 and 6-9 are cost trajectories. These figures show the accumulating cost of a 
trajectory from the origin to the PIP. For a general system with n dimensional state space, a 
trajectory is plotted in (n -j- 2) dimensional space; see Athans-Falb,t7l Figure 5-17(b), page 312. 
Projecting onto the cost-time (the independent parameter) plane gives curves such as in Figures 

6-8 and 6-9. In Figure 6-8 we have S0 = TT/3, 
an(l tne ^ns^ anSle °f approach is free. Cost 

trajectories for both methods are plotted. The final costs for these cost trajectories are given in 
Figure 6-5. In Figure 6-9 we have S0 = f/3 and the fixed final angle of approach is 7/ = -w/2. 
The costs of these trajectories are given in Figure 6-7. 

Figures 6-10, 6-11 and 6-12 are cost curves as Figures 6-5, 6-6 and 6-7. The same cost curves 
for the original method are plotted as in Figure 6-5, 6-6 and 6-7, that is, in Figure 6-10 we have 
S0 € [-1.5,1.5] and 7/ is free, in Figure 6-11 we have S0 = 0 and 7/ € [-1.5,1.5] and in Figure 
6-12 we have 80 = 7r/3 and 7/ € [-1.5,1.5]. Instead of comparing with the linearized method, as 
was done in Figures 6-5, 6-6 and 6-7, a parabola was fitted over the curve in each of the figures. 
The parabolic curve fit is close in each of these figures. This close fit indicates that the cost has 
the potential of being functionalized. A functionalized cost curve may be useful in operational 
situations. For example, Figure 6-11 shows that it would be straightforward to compute cost 
for intercepting at different angles. Cost could be computed for all angles by computing for two 
angles since two angles would determine a parabola (with one angle at the minimum). 

As was mentioned previously, both the original method and the linearized method give sub- 
optimal solutions that make different approximations. Since these two methods generate two 
different suboptimal solutions, we do not expect that their corresponding trajectories match up. 
This is why the trajectories in Figures 6-1 through 6-4 do not match. Looking at the trajectories 
in Figure 6-1 for example, the trajectory by the linearized method is longer and attains a higher 
altitude than the trajectory by the original method. It seems that the original method gives a 
trajectory with a higher curvature early on which results in a fast reduction in the heading error 
angle. The trajectory generated by the linearized method has a smaller curvature early in the 
trajectory which results in a gradual reduction in the heading error angle. The cost function, 
Equation (2.2), involves both of these factors (curvature and heading error angle) and evidently 
heading error angle can only be reduced through the use of curvature. One may suggest that the 
flight times (from launch to arrival at the PIP) of a missile actually flying the two trajectories may 
not be the same. For the original method, the higher curvature at the beginning will reduce speed 
to a greater extent; however, the path is shorter. For the linearized method the lower curvature 
will allow a more gradual reduction in speed. Any time difference, if it does exist, is not relevant 
since the cost criterion for the purposes of this report is given by Equation (2.2), which (as stated 

previously) maximizes terminal velocity. 

The trajectories in these figures were computed differently for each method. Considering the 
linearized K guidance method, first an incremental length along the trajectory, As, is set. The 
current values of the state variables, the downrange and altitude coordinates, and the range R 
to the PIP are assumed given. These variables are substituted into Equations (5.32) and (5.33) 
for the free terminal constraint case and into Equations (5.61) and (5.62) for the fixed final angle 
of approach case. These formulas give the new velocity vector angle, 7, the missile should have. 
Using 7 and As, the trajectory is incremented. What has been described is an Euler method, 
while what is actually used is a two-point method. The velocity vector angle used is the average of 
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that computed at the beginning and end of a trajectory increment. For the original method, again 
the current values of the state variables, the downrange and altitude coordinates, and the range 
R to the PIP are assumed given. Then the optimal input, /c, to the plant equations (Equation 
(2.1)) is computed using the optimal feedback controller equations previously mentioned in Lin[ ] 

and the plant is integrated. The downrange and altitude coordinates are incremented using the 
same procedure used with the linearized method. The original K guidance method is coded in 
FORTRAN while the linearized K guidance method is coded in MATLAB. 

For either method, if the PIP were to change at some point during the generation of the 
trajectory, the new PIP would be used in the computation of the next trajectory increment, (if 
it were assumed that a missile had flown the trajectory up to that point) and the trajectory 
computation would proceed as described above. Now, suppose a missile is flying a midcourse 
trajectory with free final angle of approach. Let the PIP move, sometime during the course of the 
flight, in such a way that the final angle of approach is undesirable from an operational standpoint 
(e.g., seeker looking into the sun). With the linearized method described in this report, such a 
circumstance could be checked using the closed form solution for the velocity vector angle given 
by (5.32) and, if necessary, the rest of the midcourse trajectory could be recomputed using a 
specified fixed final angle of approach (e.g., not into the sun). With the original method, such a 
circumstance could be checked only by recomputing the whole trajectory. 
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CHAPTER 7 

CONCLUSION 

This report presents an alternate solution method to the K guidance optimal control problem. 
The primary feature of this alternate method is that closed form solutions to the state variables 
have been computed for both the free terminal angle of approach case and the fixed terminal angle 
of approach case. Such solutions do not exist for the original method. The closed form solutions 
to the state variables for the linearized method established in this report may be advantageous 
in certain operational or simulation situations. For example, simulation studies may require less 
computing through the use of the closed form solutions. In operational situations requirements 
may be presented, for example, that certain velocity vector angles be avoided. The closed form 
solutions presented in this paper may be able to quickly determine if such requirements are met. 
It was seen in Chapter 6, the Numerical Examples chapter, that the cost curves can probably 
be functionalized. Finally, we remark that the technique of linearization with quadratic cost 
approximation may be of use as a general technique for computing suboptimal solutions to optimal 
control problems. 

7-1 



NSWCDD/TR-94/367 

REFERENCES 

[1] Ching-Fang Lin, Modern Navigation, Guidance, and Control Processing, Prentice-Hall, 1991. 

[2] D. Serakos and Ching-Fang Lin, "Linearized Kappa Guidance," Journal of Guidance, Control, 
and Dynamics, Vol. 18, No. 5, 1995, p. 975. 

[3] Frank Reifler, Tech. Rpt. TI 7836, RCA, 1979. 

[4] John E. Gray and Norman K. Hecht, A Derivation of Kappa Guidance, NSWC TN 89-157, 
Naval Surface Warfare Center, Dahlgren Division, Dahlgren, VA 22448, June 1989. 

[5] Ernest J. Ohlmeyer, Standard Missile Midcourse Guidance Laws, NSWCDD Internal report, 
Code G23, Naval Surface Warfare Center, Dahlgren Division, Dahlgren, VA 22448, April 1994. 

[6] Alberto Isidori, Nonlinear Control Systems: An Introduction, 2nd Edition, Springer-Verlag, 

1989. 

[7] M. Athans and P.L. Falb, Optimal Control, McGraw-Hill, 1966. 

8-1 



NSWCDD/TR-94/367 
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STATE EQUATION AND COST FUNCTION DISCREPANCY 
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In this appendix, we will discuss the discrepancy of the state equations and cost function in 
this report with the state and cost function for kappa guidance given in Lin,^-1! Gray-Hecht,tA~^ 
OhlmeyerEA-3l and Serakos-LinJA"4l To make this appendix self-contained, we repeat the state 
equations and cost function as presented in this report. The state equations are 

d_ 

dP 
7i 
Si m sec (Si) + tan (Si) /(ifo - P) 

The cost function is 

J(^,«i,P,«i)= [^ [{K\l1)+L>2]sec(8i)dP 

(A.l) 

(A.2) 

The state equations and cost function for kappa guidance as given by the above mentioned ref- 
erences are in terms of the range R (recall R = Ro - P). The state equations as given by the 

references are 
_d_ 

dP 
72 

62 

—«2 sec (62) 
— K2 sec (62) — tan (62) /R 

The cost function as given by the references is 

elk 
J(72,82, R,KI)=J    [(«2/2) + w2] sec (82) dR . 

(A.3) 

(A.4) 

The "1" and "2" subscripts are intended to distinguish variables used in the two formulations 
thereby avoiding confusion. Substituting R=Ro-P, dR/dP = -1 into Equation (A.l) results 

in 
d_ 

dR 
7i 
Si = (-1) 

d_ 

dP 
7i 
Si 

—/ci sec(^i) 
— «! sec (<5i) — tan (£1) /R 

(A.5) 

fP B*\{K2j2)+üJ
2}sec(81)dP= [R ° f(«2/2) +u2]sec{81)(-l)dR 

Jp=0      *■ i JR=Ro 

which is identical to Equation (A.3). The same substitution in Equation (A.2) gives 

rP=Ro 
\(K.i/2\+u:z  sec(8i)dP=  I 

=Ro 

which does not match with Equation (A.4). Treating P as a dummy variable in Equation (A.2) 
and R as a dummy variable in Equation (A.4), these two equations are identical. 

The distinction between the first pair of equations and the second pair of equations is that 
adP" is positive in both Equations (A.l) and (A.2) while "<£R" is negative in Equation (A.3) and 
positive in Equation (A.4). To apply the minimum principle as it is given in Athans-Falb,fA 5J the 
differential of the independent variable must have the same sign in both the state equations and 
the cost function. Looking at the proof of the minimum principle in Athans-Falb,tA_5^ page 309, 
Equation (5-503), an augmented differential equation is formed out of the integrand of the cost 
function and the state equations. This augmentation requires that the differential of the state 
equations and the cost function be the same, i.e, have the same sign. In other words, applying 
the minimum principle as stated in Athans-FalWA-5) to the optimal control problem given by 
Equations (A.3) and (A.4), and introducing a minus sign to Equation (A.4) so that the "dR's" 
line up, the cost function is negative. To illustrate this point further, consider the following 

example: 
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Example : Consider the system 

dt 

with cost function 

G 
6 

= 
0   1 
0   0 

Ci 
c2 

+ 0 
1 

u 

T2 
T T2 Yl  o 

(A.6) 

(A.7) 

The initial time is t = T and the final time is t = 0. The initial condition is ((i(T),(2(T)) 
= (CIT,(2T) and the final condition is free. The differential "dt" is negative in Equation 
(A.6) and positive in Equation (A.7). Ignoring the difference in the sign of the differential 
and applying the minimum principle, we get that the Hamiltonian is 

if = (2+y)C2
2 + 2rC2« + ^TV + p1-C2+ft-«. 

The adjoint equation is 

d~p 

dt 

dH 
Pl + (4 + r2)G + 2Tu 

(A.8) 

(A.9) 

The terminal conditions for the adjoint variables are (p1(0),p2(0)) = (0,0).   The optimal 
control is 

u fk + Ei- 
, T    r2 

The Hamiltonian system is 

where 

W = 

d 
dt 

= 
w   - 
-Q   - 

s ' 
w _ ■> 

' 0       1 
o -2/: r , < Q = 

' 0    0 
0   T2 , an dS = 

0     0 
o i/r2 

The Riccati equation is 

dK(t) 

dt 
+ KW + W'K - KSK + Q = 0 

The boundary condition is K(0) = 0. The solution to the Riccati equation is 

K = 
0 

0 

0 
t3 sinh(^) 

sinh(t) — t cosh(i) 

Note that K is negative definite. The Hamilton-Jacobi equation is 

-+mmi/(C,^,«,0 = 0. 

(A.10) 

(A.ll) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

The reason we use the state and cost given by Equations (A.l) and (A.2) is because we want 
to use the minimum principle as it is given in Athans-FalbJA_5^ 
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APPENDIX B 

TERMINAL COST ON INTERCEPT ANGLE 
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In this appendix, an intercept angle is specified by assigning a cost on any deviation from 
that intercept angle. The terminal cost constraint may be thought of as a "soft" constraint on 
the intercept angle. This is in contradistinction to the case where an intercept angle was fixed, 

which is a "hard" constraint. 
The Hamiltonian system is 

A. 
dP 

W     -S 
-Q   -W 

z 

~P 
(B.l) 

where 

W = 
0     1 
0   2/R , Q = 

0      0 
0   R2 

■a* 
and S 

0      0 
0   1/R2 

The solution to the linear homogeneous equation, Equation (B.l), is 

z 

L 1> 
(Pi) = 

fill     0i2 
021     0,22 

(A,P2) 
Z 

L 1> J 
W» 

(B.2) 

(B.3) 

where the Üij are (unknown) 2x2 matrices. We set the terminal cost to be 

K(l?) = ^(xi - 7/)2 = ^fci ~ tan   1(^Rz^ + 7^2 (B.4) 

This is a quadratic cost, which is in keeping with our LQR setup. The transversality conditions 

for this terminal cost are 

Pi(P = Ro) 
P2(P = Ro) 

dK 

d~ 
c1(z1{P = Ro)+jf) 

P=Ra 

1 
0 

(B.5) 

The known initial conditions on ~t{P = 0) (state variables) and Equation (B.5) give all the 
necessary boundary conditions for Equation (B.l). Two boundary conditions are on the state 
variables and two conditions are on the adjoint variables. Rewriting Equation (B.5), 

-J?{P = R0) = cy 
1   0 
0   0 

zi(P = Ro) 
z2(P = Ro) 

+ Cy ■is (B.6) 

Setting Pi = 0 and P2 = R and substituting this into Equation (B.3) gives 

n22(i2o,P)-Cy 
1   0 
0   0 ni2(Ro,P)\?{P) 

I °7 
1   0 
0   0 

Thus, 

OnCRo, P) - ft2i(ßo, P) \ -?(P) + <h 

-?{P) = K{P)?(P) + ?{P)-V> 

•7/ 

(B.7) 
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where we have set 

K{P) = {il22(Ro,P)-<h 
1   0 
0   0 

-i 

^■u(Ro^P) 

°1 
1  0 
0   0 ftn^P)-MÄo.J0) 

and 

-g{P) = \tt22{Ro,P)-c1 
1   0 
0  0 

nn(Bo,P)\ -Cy 

Here, g(P) is a 2 x 1 column vector. We have that K satisfies the Riccati equation, 

^ + KW + W'K - KSK + Q = 0 , 
dP 

and g satisfies 
d~g 
dP 

From Equations (B.6) and (B.7), we have 

K(Ro) = c, 
1   0 
0   0 

(KS - W')t ■ 

and if (i?o) = Cy 

(B.8) 

(B.9) 

(B.10) 

(B.ll) 

(B.12) 

These boundary conditions are independent of 7/; hence, they may be solved once, numerically, 
and stored. 
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